Optimization of machining parameters and tool selection in 2.5D milling using Genetic Algorithm

نویسندگان

  • Arun Kumar Gupta
  • Pankaj Chandna
  • Puneet Tandon
چکیده

Optimization of machining parameters for improving the machining efficiency is become important, when high capital cost NC machines have been employed for high precision and efficient machining. The strategy is to minimize the production time and cost by optimizing feed per tooth, speed, width of cut, depth of cut and tool diameter by satisfying all the constraints such as maximum machine power, maximum cutting force, maximum machining speed, feed rate, tool life and required surface roughness. The optimal End milling cutter diameter and radial depth of cut (step over) are also the key issues for minimization of total production cost. Therefore, in this paper an attempt has been made to include all major parameters such as feed per tooth, speed, width of cut (Step-over) and depth of cut along with diameter of tool for minimising the time and production cost during 2.5 D milling. Hence, a mathematical model has been developed and Genetic Algorithm (GA) has been proposed to solve the problem. Optimal values of machining parameters have been calculated for benchmark problems and compared with handbook recommendations. It has been found that approximately 13% of production cost can be reduced by choosing optimal cutter diameter and width of cut. Besides this 50% reduction in cost per unit volume and 61% increment in material removal rate has also been reported by selecting optimal cutting parameters over the handbook recommendations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machining Parameters Selection for Milling Operations Using Shuffled Frog-Leaping Algorithm

This paper introduces a Shuffled Frog-Leaping Algorithm based method for the optimization of machining parameters for milling operations. An objective function based on maximum profit in milling operation has been used. The algorithm is compared with others techniques and outperforms the results reached by standard shuffled frogleaping algorithm, differential evolution, particle swarm optimizat...

متن کامل

An empirical study on statistical analysis and optimization of EDM process parameters for inconel 718 super alloy using D-optimal approach and genetic algorithm

Among the several non-conventional processes, electrical discharge machining (EDM) is the most widely and successfully applied for the machining of conductive parts. In this technique, the tool has no mechanical contact with the work piece and also the hardness of work piece has no effect on the machining pace. Hence, this technique could be employed to machine hard materials such as super allo...

متن کامل

Improvement of Surface Finish when EDM AISI 2312 Hot Worked Steel using Taguchi Approach and Genetic Algorithm

Nowadays, Electrical Discharge Machining (EDM) has become one of the most extensively used non-traditional material removal process. Its unique feature of using thermal energy to machine hard to machine electrically conductive materials is its distinctive advantage in the manufacturing of moulds, dies and aerospace components. Howevere, EDM is a costly process and hence proper selection of its ...

متن کامل

Optimization of Machining Parameters to Minimize Tool Deflection in the End Milling Operation Using Genetic Algorithm

Optimization of cutting parameters is valuable in terms of providing high precision and efficient machining. One of the effects of cutting force in the end milling operation with low diameter tool (during metal cutting) is tool deflection. Assuming that machining errors mostly arise from tool deflection, attempt was made to optimize machining parameters using Genetic Algorithm (GA) so as to min...

متن کامل

Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool

Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011